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Abstract—Most existing unsupervised video hashing methods
generate binary codes by using RNNs in a deterministic manner,
which fails to capture the dominant latent variation of videos. In
addition, RNN-based video hashing methods suffer the content
forgetting of early input frames due to the sequential processing
inherency of RNNs, which is detrimental to global information
capturing. In this work, we propose an unsupervised variational
video hashing (UVVH) method for scalable video retrieval. Our
UVVH method aims to capture the salient and global information
in a video. Specifically, we introduce a variational autoencoder to
learn a probabilistic latent representation of the salient factors
of video variations. To better exploit the global information
of videos, we design a 1D-CNN-LSTM model. The 1D-CNN-
LSTM model processes long frame sequences in a parallel and
hierarchical way, and exploits the correlations between frames
to reconstruct the frame-level features. As a consequence, the
learned hash functions can produce reliable binary codes for
video retrieval. We conduct extensive experiments on three widely
used benchmark datasets, FCVID, ActivityNet and YFCC to
validate the effectiveness of our proposed approach.

Index Terms—hashing, scalable video retrieval, unsupervised,
variational.

I. INTRODUCTION

Over the past few years, overwhelming visual data has
been exploding over Internet. For example, more than 300
hours of videos are being uploaded on the YouTube video
website per minute. Dramatically increasing visual data brings
enormous challenges to visual retrieval and also makes large-
scale visual retrieval an urgent need. Even though there are
extensive studies on scalable image retrieval [1]–[12], only
a few works focus on scalable video retrieval [13]–[18].
Compared with images, videos provide rich visual patterns
as well as correlations between frames, which makes video
retrieval more sophisticated than image retrieval [19], [20].

Confronting large scale datasets and high dimensional fea-
tures, video hashing methods have been widely applied in
scalable video retrieval [13]–[18]. Among them, unsupervised
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video hashing methods which do not require time-consuming
manual labels are more practicable for most realistic problems.
In general, unsupervised video hashing methods integrate data
properties such as data distribution and manifold structure to
map resemble data into resemble binary codes for efficient
video retrieval [15], [17], [21]. Usually the salient factors
are important to video retrieval among rich patterns con-
tained in a video such as various illumination and textured
background [22]. However, most existing unsupervised video
hashing methods do not adequately exploit the salient factors
of video variations.

Furthermore, most deep video hashing methods [16], [17]
employ a CNN-RNN structure to capture the spatial-temporal
information in a video. Specifically, they extract the frame-
level features by using a pre-trained CNN network and encode
them to a video level representation by using a long-short
term memory (LSTM) network [23], [24]. Although LSTM
is widely used for processing sequence data, its sequential
mechanism leads to the fact that the early input frames are
more likely to be forgotten. Hierarchical LSTM attempts
to alleviate the content forgetting disadvantage by reducing
the input length of a long video [25]. Whereas it still sets
priority to the latest input frames, which deteriorates the global
information capturing and leads to suboptimal binary codes.

In this work, we propose a 1D-CNN-LSTM based Un-
supervised Variational Video Hashing (UVVH) method for
scalable video retrieval. UVVH has two strengths over most
existing video hashing methods. 1) Instead of learning in
a fully deterministic way, UVVH integrates the variational
mechanism to capture the salient factors of video variations.
This is beneficial to out-of-sample extension. 2) The 1D-CNN-
LSTM model learns the binary code in a parallel and hierar-
chical manner, and exploits the correlations between frames
to reconstruct frame features. This model can better exploit
compositional structure in the video, thus learns reliable hash
functions. As shown in Fig. 1, our proposed UVVH is in
a variational encoder-decoder framework. We design a vari-
ational 1D-CNN encoder to learn a posterior distribution for
each video conditioned on input frame-level features. Through
this variational mechanism, the binary code is encoded in a
probabilistic manner from the posterior distribution. To better
exploit the global information, we propose a 1D-CNN-LSTM
decoder to reconstruct the frame-level features from the binary
code. Specifically, a 1D-deconvolution decoder decodes the
binary code in parallel and yields intermediate frame features.
And a LSTM decoder generates the final frame features from
the binary code and the intermediate features sequentially by
further exploiting the correlations between frames. We train
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Fig. 1: The overview of the proposed Unsupervised Variational Video Hashing (UVVH) for scalable video retrieval. Unlike
conventional video hashing methods (on the bottom) which employ a RNN encoder to learn the binary code in a deterministic
manner, UVVH (on the top) integrates the variational 1D-CNN encoder and the 1D-CNN-LSTM decoder to learn hash
functions. The variational 1D-CNN encoder takes frame-level features as inputs and generates a binary code. Then the
1D-CNN-LSTM decoder reconstructs the frame-level features from the binary code. The whole network is trained with
a probabilistic latent loss and a reconstruction loss. The hollow squares denote LSTM units. The gray dashed frames
denote convolutional/deconvolutional layers. The green rectangles denote frame-level features. Lighter green means that less
information of the input frame is preserved. The green dashed frame denotes the content forgetting of early frame inputs.

the whole model with a probabilistic latent loss and a recon-
struction loss. The former encourages the learned posterior
distribution to be close to a pre-defined prior and the latter
encourages the input frame-level features to be reconstructed.
Extensive experimental results on three public video datasets
demonstrate the effectiveness of UVVH. The contributions of
this work are briefly concluded as follows:

1) We integrate the variational mechanism to capture the
salient factors of video variations. By learning hash codes in
a generative form, the hashing model is capable to estimate
the statistics of training data and is suitable to out-of-sample
extension.

2) We design 1D-CNN-LSTM model, which integrates the
advantage of 1D-CNN and LSTM to better capture the global
information in videos. By processing the input frames in a
hierarchical and parallel manner, it alleviates information for-
getting that LSTM-based models usually suffer. And compared
with fully convolutional models, 1D-CNN-LSTM model can
better exploit the correlations between frames.

3) We conduct extensive experiments to demonstrate the
superior performance of UVVH over state-of-the-art methods
and also validate the effectiveness of the variational mecha-
nism and 1D-CNN-LSTM model.

II. RELATED WORK

In this section we briefly review three related topics: 1)
learning-based hashing, 2) video representation learning and
3) variational autoencoder.

A. Learning-based Hashing

Learning-based hashing aims to learn a series of hash
functions from data so that good retrieval performance could
be achieved in the Hamming space [26], [27]. Learning-based
hash methods can be generally classified into shallow hashing
and deep hashing. Shallow hashing methods take hand-crafted
features as inputs and learn hash functions from them [1],
[2], [5]. The most representative one is IteraTive Quantiza-
tion (ITQ) proposed by Gong et al. [1]. It found a rotation
of zero-centered data to minimize the quantization error when
mapping the data to vertices of the binary hypercube.

In recent years, a variety of deep learning algorithms
have been applied to hash learning [28]–[35]. Among them,
Liong et al. [28] and Lai et al. [30] incorporated pair-wise
supervision and triplet ranking loss respectively to train the
deep hashing model. Chen et al. [34] transformed the original
binary optimization into differentiable optimization problem
over hash functions through series expansion to deal with the
objective discrepancy caused by relaxation.

There are also some works focusing on video hashing [13],
[16]–[18], [21], [36]–[38]. For example, Song et al. [16]
proposed Multiple Feature Hashing (MFH) to explore the
local structural information, however they were unaware of
the temporal order of video frames. Wu et al. [39] proposed
Unsupervised Deep Video Hashing (UDVH) which aimed to
balance the variation of each dimension of the hash code.
Qi et al. [38] proposed 3DCNN-based hash which attempted
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to capture the motion information through multiple adjacent
frames. The limitation is that 3DCNN can only cope with
short video clips of around 16 frames [40]. Zhang et al. [17]
proposed Self-Supervised Temporal Hashing (SSTH) which
attempted to capture the temporal information in a video. The
long processing path from inputs to outputs makes it hard to
capture the long-range correlations in a video. Song et al. [37]
extended SSTH into Self Supervised Video Hashing (SSVH)
via exploiting more powerful hierarchical LSTM networks.
While the hierarchical structure could reduce the input length,
it still deals with the input frames in a sequential manner.
Li. et al. [21] learnt temporal representation and appearance
representation simultaneously, which also exploited a LSTM-
based model.

B. Video Representation Learning

RNNs have been widely employed to learn video repre-
sentation in recent years [25], [41]–[46]. For example, Don-
ahue. et al. [41] introduced Long-term Recurrent Convolu-
tional Networks (LRCN) which utilized CNN-LSTM structure
to extract saptial-temporal representation for each frame. In
their work, CNN was used for frame-level features extrac-
tion instead of video-level representation generation. Srivas-
tava et al. [43] proposed a RNN based autoencoder to learn
the video representation. Venugopalan et al. [44] proposed
a two-layer stacked LSTM to process the frame sequence.
Pan et al. [25] introduced hierarchical LSTM layer which
could exploit longer temporal structure by reducing the length
of input information flow. RNNs set priority to latest input
frames and are likely to forget the early ones, thus conventional
RNN-based methods are not suitable for global information
capturing.

CNN, which has shown promising ability to capture the
semantic information as well as the correlations between
sequence fragments [47], [48], is also an important branch to
learn video representation. For example, Karpathy et al. [47]
proposed an architecture with two spatial resolutions channels
to boost spatial-temporal pooling. The works contemporaneous
with ours [49]–[51] employed 1D-CNN to capture the video
representation. Among them, Kim et al. [49] applied 1D-CNN
to aggregate the learned video concepts in a video story QA
model. Guo et al. [51] proposed a fully convolutional network
to identify multi-scale temporal action proposals. They utilized
only the temporal convolutions to retrieve accurate action
proposals for video sequences. Rochan et al. [50] proposed
a fully convolutional autoencoder for video summarization.
However, CNN-based encoder-decoder models are difficult to
reconstruct the frames in a fully feedforward manner.

C. Variational Autoencoder

Variational autoencoder (VAE) [52], [53], which refor-
mulates the auto-encoder model as a variational inference
problem, has been widely used to generate a variety of
complex data and representations [54]–[59]. Kingma et al. [52]
and Rezende et al. [53], who first proposed VAEs, showed
that VAEs could well exploit salient factors of variation by
capturing the latent representation in an unsupervised and

probabilistic manner. Yang et al. [56] proposed an improved
VAE with dilated convolutions for generative text modeling.
Walker et al. [58] proposed a conditional VAE to predict the
dense trajectory of pixels in a scene. Pu et al. [59] developed
a novel variational autoencoder to model images, as well as
associated labels or captions.

Promising performance as VAE has shown in a variety of
fields, only a few works attempted to learn hash functions by
using variational mechanism. Liong et al. [60] proposed cross-
model deep variational hashing method for cross-modality
retrieval. They learned hashing mapping in a deterministic
manner, and then modeled a probabilistic latent variable to
approximate the inferred binary codes. They claimed that
in this way, the model could be more general and suitable
for out-of-sample extension. Chaidaroon et al. [61] proposed
variational deep semantic hashing for text documents, where
the binary code generation and reconstruction were conducted
through a series of fully connected (FC) layers. Dai et al. [62]
proposed a generative approach to learn hash functions through
Minimum Description Length principle while referring to VAE
to address an expensive integer programming subproblem.
Shen et al. [63] proposed Deep Variational networks for
Binary representation learning (DBV). Since DBV is initially
designed for image hashing, directly extending it to video
hashing will inevitably lead to performance degradation.

III. UNSUPERVISED VARIATIONAL VIDEO HASHING

In this section, we first present the overall framework
of UVVH in subsection III-A. The framework of UVVH
is in a variational encoder-decoder mode. We detail the
variational 1D-CNN encoding network in subsection III-B.
And we describe the 1D-CNN-LSTM decoding network in
subsection III-C.

A. Overall Framework of UVVH

Let S = {Si}N1=1 be a collection of N videos, among
which Si denotes the i-th video. For each video, we uniformly
sample m frames. We process each frame via a conventional
CNN to gain a frame-level feature. In this way, we trans-
form the raw video Si to a sequence of frame-level features
{v1i ,v2i , ..,vmi }T ∈ Rm×l. vji denotes the j-th frame-level
feature of the i-th video with dimension of l. We denote the
frame-level features as {vji }mj=1 for short.

Our goal is to learn a mapping B to transfer each frame-
level feature sequence {vji }mj=1 to a compact binary code hi ∈
{−1, 1}k, such that the similarity structure between videos is
well preserved in the Hamming space. k is the code length.
We present the nonlinear mapping B as follows:

B : Rm×l → {±1}k. (1)

UVVH composes of a variational 1D-CNN encoder which
generates the binary code by learning an approximate posterior
distribution and a 1D-CNN-LSTM decoder which reconstructs
the frame-level features from the binary code. In order to
preserve the similarity structure in Hamming space for scalable
video retrieval, the encoder-decoder model is trained to capture
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Fig. 2: The 1D-CNN variational encoder. Frame-level features
are the inputs, and the binary code is the output. Taking
input frame length of 14 for example, there are three 1D-
convolutional layers. The kernel sizes for these layers are
4, 4 and 2 respectively. The strides for all these layers
are 2. A single real-value vector ti is generated via the
1D-convolution network. Then the mean and variance of a
Gaussian distribution are calculated from ti. Next, a real-value
vector zi is sampled from the Gaussian distribution. Finally,
the binary code hi is obtained by discretizing zi. Gray dashed
frames denote 1D-convolutional layers. Without confusion, the
subscripts for all the notations i are omitted in the figure.

the salient factors of a video and reconstruct the frame features.
The loss function of UVVH composes of two terms as follows:

L = α1Lprob + α2Lrecon. (2)

Lprob is a probabilistic latent loss between the approximate
posterior distribution learned by the variational encoding net-
work and a predefined prior. Minimizing Lprob encourages
the approximate posterior to be close to the prior. The calcu-
lation of Lprob is described in subsection III-B. Lrecon is a
reconstruction loss between the reconstructed frame features
and input frame-level features. Minimizing Lrecon encourages
the decoding network to reconstruct the frame-level features
from the binary code. The calculation of Lrecon is described
in subsection III-C. α1 and α2 are hyper-parameters which
balance these two losses.

B. Variational Encoding Network

We design a variational encoding network to learn an
approximate posterior distribution in order to capture the
salient information of the input video. The objective is to
minimize the divergence between the posterior distribution and
a predefined prior.

The variational 1D-CNN encoding network is depicted in
Fig. 2. The inputs of the encoding network are frame-level
features {vji }mj=1 of a video Si. At each layer, 1D-convolution
is operated along the length dimension of the feature sequence
with da 1D-convolution kernels {W |Wj ∈ Rdb×ks , j =
1, 2, ..da}. db is the feature dimension of the layer’s input,
ks is the kernel size, da is the number of kernel channels
and j denotes the j-th channel. With da kernels operated at

each layer, the output features of the corresponding layer are
projected to da-dimension: Rdb → Rda . The output features
at each layer are then injected to the next layer. With 1D-
convolution operation, the length of the outputs at each 1D-
convolutional layer decreases gradually and a d-dimensional
real-value vector ti is finally obtained. We denote the mapping
from frame-level features {vji }mj=1 to ti as F and present the
mapping as follows:

ti = F({vji }
m
j=1, θ), (3)

where θ denotes the learnable parameter set of the encoding
network.

Since variational mechanism can improve the robustness
and generalisation for representation learning, we integrate it
into the encoding network to capture holistic and salient in-
formation in a video. We aim to obtain a posterior distribution
p(zi|v1i ,v2i , ..,vmi ), latent variable zi sampled from which can
recover the frame-level features {v1i ,v2i , ..,vmi }T . zi is a real-
value latent variable with dimension of k. Since the frame-level
features have been encoded to ti, we rewrite this posterior
distribution as p(zi|ti) for short. Since introducing a nonlinear
mapping from the latent variable zi to the frame features re-
sults in intractable posterior distribution p(zi|ti) [53], we learn
an approximation qθ(zi|ti) for the true posterior distribution.
To enable a high capacity, we assume the posterior qθ(zi|ti) to
be a Gaussian distribution N (µi, diag(σ2

i )), where µi and σ2
i

are the mean and variance of zi respectively. The calculations
of µi and σi are presented as follows:

µi = dense(tanh(ti), k), (4)
logσi = dense(tanh(ti), k), (5)

where tanh is an activate function which is defined as:
tanh(x) = sinh(x)

cosh(x) = ex−e−x

ex+e−x . dense(x, k) is a linear
function that maps the vector x to a k-dimensional vector. It is
presented in detail as dense(x, k) = x×W + b. W ∈ Rd×k
is a learnable parameter matrix and b ∈ Rk is a learnable bias
vector. It is worth to mention that these two dense functions
in (4) and (5) do not share parameters.

Similar to [53], we let the prior over the latent variables be
the centered isotropic multivariate Gaussian p(z) = N (0, I).
We encourage the approximate posterior distribution to be
close to the prior with Kullback-Leibler (KL) Divergence
DKL. We derive the analytic form of the KL Divergence as
follows:

DKL(qθ(zi|ti)||p(zi))

=

∫
qθ(zi|ti)(log qθ(zi|ti)− log p(zi))dzi

= −1

2

k∑
j=1

(1 + logσ2
ij − µ2

ij − σ2
ij),

(6)

where j denotes the j-th hash function. We have the specific
formulation of Lprob in (2) as:

Lprob = −
1

N

N∑
i=1

DKL(q(zi|ti)||p(zi)). (7)

While the loss in (7) is related to p(zi) and qθ(zi|ti),
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Fig. 3: The 1D-CNN-LSTM decoder. The input of the decoder
is the binary code hi and the outputs are final reconstructed
frame features {ṽji }14j=1. The binary code hi is projected to a
real-value vector t̂i with two FC layers. The 1D-deconvolution
network generates intermediate frame features {v̂ji }14j=1 from
the real-value vector t̂i. These intermediate reconstructed vec-
tors, together with t̂i, are input to the LSTM decoding network
to generate final reconstructed frame features {ṽji }14j=1. Gray
dashed frames denote 1D-deconvolutional layers. Blue squares
denote LSTM units. Without confusion, the subscripts for all
the notations i are omitted in the figure.

the generation of the binary code requires extra sampling
process. In the training stage, we sample zi from the posterior
distribution qθ(zi|ti) as follows:

zi =µi + σi � εi,
εi ∼ N (0, I).

(8)

Then we discretize zi to a binary code hi:

hi = sign(zi), (9)

where sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise.
To train the encoder with back-propagation, the derivative
should be computed. The derivative of sign(x) is denoted
as sign′(x) = 2δ(x). Since the derivative is zero almost
everywhere, we refer to BinaryNet [31] to handle the ill-
pose gradient problem. During back-propagation, we set the
derivative of sign(x) to be 1 if x is within [−1, 1], and 0
otherwise.

In the testing stage, given a video of retrieval database or a
query video Sq , the encoder generates the posterior distribu-
tion qθ(zq|Sq) = N (µq,σ

2
q ) according to Equation (4). Then

we obtain zq in a deterministic manner with zq = µq . This
means that in the retrieval stage, we sample zq at the mean
of the approximate posterior distribution, where the sampled
presentation is most likely to contain holistic information.
Then the binary code hq is generated by hq = sign(zq).

C. 1D-CNN-LSTM Decoding Network
The decoding network is to reconstruct the frame features

from the binary code, which is presented as follows:

{ṽji }
m
j=1 = D(hi, φ), (10)

where D denotes the decoding mapping, φ denotes the param-
eter set of the decoding network, hi is the binary code, and
{ṽji }mj=1 are reconstructed frame features.

As it is shown in Fig. 3, we cascade the 1D-deconvolution
network (also known as transposed convolutions [64] and
fractionally strided convolutions [65]) and the LSTM network
together as the decoding network, aiming to reconstruct the
frame-level features from the binary code. The reconstruction
process is briefly concluded as follows. We project the bi-
nary code hi to a real-value vector t̂i as the input of the
deconvolution network. The dimension of t̂i is d, the same
as that of ti in Equation (3). Then the 1D-deconvolution
network generates a sequence of intermediate reconstructed
frame features {v̂ji }mj=1, where v̂ji is the j-th intermediate
reconstructed frame feature of the i-th video. Finally the
LSTM network generates the final frame features {ṽji }mj=1.

Instead of direct projection from hi to t̂i, we first map
the binary code to a high-dimensional intermediate real-value
vector tpi. The dimension of tpi is p which is much higher
than d. Then we project tpi to t̂i. This allows the decoding
network to recover from the discretization bottleneck [66]. We
present the projections as follows:

tpi = tanh(dense(hi, p)), (11)

t̂i = tanh(dense(tpi, d)). (12)

The deconvolution operation can be viewed as a re-
verse process of the convolution operation. With deconvo-
lution operation, the length of the sequence progressively
increases through each deconvolutional layer. Then the 1D-
deconvolution network outputs intermediate frame features
{v̂ji }mj=1. While the 1D-CNN network does not suffer content
forgetting of early input frames by parallel processing, it is
hard to reconstruct the frame-level features due to the feed-
forward structure. Specifically, the 1D-deconvolution network
reconstructs the frame-level features by deriving the following
conditional distribution:

P (v̂i|hi) = P (v̂1i , v̂
2
i , ...v̂

m
i |hi). (13)

This distribution contains the assumption that the reconstructed
frame features are only conditioned on hi. With this assump-
tion, the decoding network has to capture most details of each
frame to accurately recover the frame-level features, which is
quite difficult.

Under most circumstances, there are strong correlations
between frames within a video. Specifically, as long as a
sequence of frames have been observed, the following frames
can be partly implicated from them. In order to exploit the
correlations between frames, we integrate an LSTM decoder
to further reconstruct the frame features from the intermediate
reconstructed frame features and obtain the final reconstructed
frame features {ṽji }mj=1. The decoding process of the LSTM
network can be modeled as the following full joint distribution:

P (ṽ1i , ṽ
2
i , ...ṽ

m
i |hi) =

m∏
j=1

P (ṽji |hi, v̂
1
i , ..v̂

j−1
i ). (14)

By doing so, when some of the frame features are not
successfully recovered by the 1D-deconvolution decoder, the
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Algorithm 1 Training of UVVH

Input: Training set {Si}Ni=1, network learning parameters,
iterative number Iter, objective function parameters α1, α2.
Output: Network parameters θ and φ.
Step 1 Initialization:
Uniformly sample m frames for each video.
Extract frame-level features {v1i ,v2i , ..,vmi }Ni=1 by using
pre-trained CNN.
Initialize UVVH network parameters.
Step 2 UVVH network learning:
for iter = 1, 2, .., Iter do

for i = 1, 2, .., N do
%Forward Propagation:
Compute ti for each input video Si according to (3).
Calculate µi and σi with (4) and (5).
Sample zi with (8).
Obtain binary code hi with (9).
Compute the real-value vector t̂ from h with (11).
Generate the intermediate frame features {v̂ji }mj=1

by the decovolutiona decoder.
Generate the final frame features {ṽji }mj=1 by the

LSTM decoder.
%Backward Propagation:
Compute gradient of loss function with (2), (7), (15).
Perform gradient descent to learn θ and φ.

end for
end for
Return: learned network parameters θ and φ.

LSTM decoder can still well recover the frame features by
exploiting the correlations between frames. Therefore, we can
relief the decoding network from focusing too much details
and allow it to pay more attention on global and holistic
information.

Inspired by caption models [25] [67], we design the LSTM
decoding process as follows. At first time step, we project t̂i
to frame-level feature space and inject it into LSTM. Here, t̂i
is assumed to contain full information from the binary code
hi and it provides global guiding to the LSTM decoder. Then
the LSTM decoder yields the first reconstructed frame feature
ṽ1i . Next, we inject the first intermediate reconstructed frame
feature v̂1i into LSTM to obtain the second frame feature ṽ2i .
We conduct similar operations recurrently till we obtain the
m-th reconstructed frame-level feature ṽmi .

We use Mean-Square Error (MSE) to describe how well
each video is reconstructed. Then we have the specific formu-
lation of the reconstruction loss Lrecon in (2):

Lrecon =
1

mN

N∑
i=1

m∑
j=1

||vji − ṽ
j
i ||

2
2. (15)

Minimizing Lrecon encourages the final reconstructed frame
features {ṽji }mj=1 to be close to the input frame-level features
{vji }mj=1. The training process of UVVH is summarized in
Algorithm 1.

IV. EXPERIMENTS

To validate the effectiveness of our proposed UVVH method
for scalable video retrieval, we conduct extensive experiments
on three large-scale video datasets: FCVID [68], Activi-
tyNet [69] and YFCC [70]. We conduct all the experiments
with Pytorch on single Geforce GTX 1080 Ti GPU.

A. Datasets

1) FCVID. Fudan-Columbia Video Dataset contains 91,223
web videos annotated manually into 239 categories. The total
duration of all videos is 4,232 hours and the average duration
per video is 167 seconds. The categories in FCVID cover a
wide range of topics like procedural events (e.g.,“brushing
teeth”), social events (e.g., “tailgate party”), objects (e.g.,
“bee”), scenes (e.g., “tornado”), etc. Owing to the damaged
data as well as category overlap, there are 91,185 videos
available. Following the setting in [17], we utilize 45,585
videos as training set and 45,600 videos as retrieval database
and queries.

2) ActivityNet. This recently released video dataset covers
a wide range of complex human activities. It comprises 20K
videos in 200 activity categories collected from YouTube. The
lengths of the videos range from several minutes to half an
hour. The total length of the whole dataset is 648 hours.
Many of the videos in this dataset are shot by amateurs in
uncontrolled environments, where the variances within the
same activity category are often large. Since the test split of
ActivityNet is not publicly available, we use validation set as
our test set. In each category, we randomly choose 1000 videos
from the validation set for queries, and use the remaining
validation videos for retrieval database. In conclusion, we use
9,722 videos for training, 1,000 for queries and 3,760 for
retrieval database.

3) YFCC. Yahoo Flickr Creative Commons 100 Million
Dataset is the largest public video dataset which contains 0.8M
videos. In the labeled split, there are 80 categories collected
from the third level of MIT SUN scene hierarchy [71]. We
exploit 511,044 videos for our experiment. We use 409,788
unlabeled videos for training. Among the 101,256 labeled
videos, we randomly choose 1,000 videos with non-zero label
as queries and the rest as retrieval database.

B. Evaluation Metrics

We employ Average Precision at top-K retrieved videos
(AP@K) for retrieval performance evaluation [72]. AP@K is
defined as follows:

AP@K =
1

min(R,K)
∑K
i=1

Ri

i × Ii
,

1 ≤ i ≤ K
(16)

where R is the number of total relevant videos in the database.
Ri is the number of relevant videos in the top-i retrieval result.
Ii = 1 if the i-th video is considered to belong to the same
category with the query and Ii = 0 otherwise. We use the
mean of AP@K over all the queries (mAP@K) for the main
evaluation metric. To provide a detailed observation of the
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retrieval performance, we use Precision-Recall curve as an
additional evaluation measurement. To sort the results, we rank
videos according to their Hamming distance from the query.

C. Implementation Details

On FCVID and YFCC datasets, we follow the setting
in [17]. We uniformly sample 25 frames for each video and use
the 16 layers VGG network [73] pre-trained on ImageNet [74]
to extract the feature for each frame. In this way, we get 4096-
dimensional frame-level features as inputs. In other words, the
dimension of the input feature sequence is 4096 × 25. Since
[17] did not include ActivityNet dataset for evaluation, we
follow the setting in [21] on this dataset. We use the 50 layers
ResNet network [75] pre-trained on ImageNet to extract the
frame-level features, then we get 2048×25-dimensional input
feature sequence.

Our UVVH network is composed of a 1D-convolution
encoder, a 1D-deconvolution decoder as well as an LSTM
decoder. Both the 1D-CNN encoder and decoder have
three convolutional/deconvolutional layers. Each convolu-
tional/deconvolutional layer is followed by a batch normaliza-
tion layer. We apply the activate function tanh for the output
of each convolutional/deconvolutional layer. The length of the
feature sequence decreases from 25 to 1 through convolution
operations and increases from 1 to 25 through deconvolution
operations. We show the architecture details in TABLE I.
Without confusing, we omit standard normalization layers and
activation operations in this table. Specifically, fc-x denotes a
FC layer whose output is x. k is the length of binary code.

TABLE I: Configurations of the UVVH network

type kernel size/stride/hidden size output size
1D-conv1 4 / 2 / - 512× 10
1D-conv2 4 / 2 / - 512× 4
1D-conv3 4 / 2 / - 256× 1

fc-µ/ logσ - k
sign - k
fc-tp - 4096
fc-t̂ - 256× 1

1D-deconv1 4 / 2 / - 512× 4
1D-deconv2 4 / 2 / - 512× 10
1D-deconv3 4 / 2 / - 4096/2048× 25

LSTM - / - / 256 4096/2048

We initialize parameters in the network by using
Xavier initialization [76] (the weight is set as W =

U [−
√

6
nin+nout

,
√

6
nin+nout

] where W ∈ Rnin×nout ). We
set the mini-batch size to be 256 and train our model with
Adam optimization algorithm [77]. We set the learning rate,
the momentum, and weight decay as 0.001, 0.9 and 0.0001
respectively. We set α2 = 1. Considering that the training will
suffer the randomness introduced by the monte Carlo sampling
procedure on the latent space of VAE, we train our network
in two stages. We start training our model in a deterministic
manner, which is denoted as stage1. That is, we set α1 = 0
and z = µ with µ calculated by (4). After 50 epochs, we
continue to train our model in a probabilistic manner, which
is denoted as stage2. That is, we set α1 = 1 and sample z
over N (µ,σ2) with (8). By pre-training the network in stage1,

we can get pretty good mean µ of the posterior Gaussian
distribution for stage2 at very beginning. In this way, we can
easily sample latent variables which can be quantized into
qualified binary codes. We stop training at the 80th epoch. To
avoid overfitting, we employ Drop-Out [78] for our decoding
network and parameter regularization for the whole network.

D. Compared Methods

We compare our UVVH method with the following methods
to validate the effectiveness.

1) ITQ. Iterative Quantization [1] is regarded to be a classic
unsupervised image hashing method. We extend it for video
retrieval. We get a video-level presentation by conducting
mean-pooling on the frame-level features.

2) DH. Deep Hashing [28] adds a binarization loss function
at the top layer of a deep neural network. We extend DH for
video retrieval. We apply the RNN encoder-decoder structure
in [43] to obtain the video-level representation.

3) MFH. Multiple Feature Hashing [16] learns hash func-
tions based on the similarity graph of the frames. It learns
frame-level binary codes and then uses average pooling to get
the video-level representation. Finally, it binarizes video-level
representation to a binary code.

4) SSTH. Self-Supervised Temporal Hashing [17] focuses
on exploiting temporal information in videos. It introduces
Binary LSTM to encode the frame-level features to a binary
code. Moreover, it uses a forward LSTM and a backward
LSTM to reconstruct the frame-level features from the binary
code respectively.

5) JTAE. Joint Temporal Appearance Encoder [21] employs
LSTM based autoencoder to jointly learn the appearance and
temporal information. Beside a forward LSTM to capture the
temporal information, it employs FC layers to learn appearance
information for each frame.

6) SSVH. Self Supervised Video Hashing [37] is an ex-
tension of SSTH which exploits powerful hierarchical LSTM
networks. Besides, it simultaneously reconstructs the visual
content as well as the neighborhood structure of videos.

E. Results and Analysis

Comparisons with state-of-the-arts: On FCVID dataset,
UVVH consistently outperforms MFH, ITQ, DH, SSTH and
JTAE with all the code lengths in terms of mAP@K as shown
in Fig. 4 (a)-(d). UVVH shows overwhelming advantage when
code length is relatively short. Specifically, when the code
length is 16 bits, UVVH outperforms the most competitive
JTAE by 64.8%, 96.5%, 114.0%, 129.1%, 149.0% and 154.3%
in terms of mAP@K (K = 5, 20, 40, 60, 80, 100). This
demonstrates that UVVH model is more powerful to capture
salient and global information, since retrieval with short codes
usually requires to capture salient information instead of
details considering the amount of information that short codes
could contain. Besides, UVVH outperforms SSVH remarkably
with code length of 16 bits and 32 bits. In view of mAP@5,
UVVH shows advantage over SSVH with code length of 64
bits and is as good as SSVH with 128 bits. It should be noticed
that SSVH further reconstructs the neighborhood structure of
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(a) FCVID 16 bits (b) FCVID 32 bits (c) FCVID 64 bits (d) FCVID 128 bits

(e) ActivityNet 16 bits (f) ActivityNet 32 bits (g) ActivityNet 64 bits (h) ActivityNet 128 bits

(i) YFCC 16 bits (j) YFCC 32 bits (k) YFCC 64 bits (l) YFCC 128 bits

Fig. 4: Performance (mAP@K) of different video hashing methods with a variety of code lengths.

(a) FCVID 32 bits (b) FCVID 64 bits (c) ActivityNet 32 bits (d) ActivityNet 64 bits

Fig. 5: Precision-Recall (PR) curves of different video hashing methods with a variety of code lengths. (a) and (b) are the PR
curves on FCVID dataset. (c) and (d) are the PR curves on ActivityNet dataset.

videos via an extra neighborhood similarity loss, which is
orthogonal with our contributes. This is a possible reason that
SSVH outperforms UVVH when K becomes larger with 64
and 128 bits. Another reason is that SSVH employs more
complex structure, hierarchical LSTM, therefore can capture
more details in the videos. Nevertheless, mAP@5 results of
UVVH is very competitive compared with SSVH.

The mAP@K results on ActivityNet are shown in Fig. 4 (e)-
(h). In general, the results of all these methods on ActivityNet
are poorer than FCVID. This is because the scale of retrieval
database is relatively small (3,760 videos in 200 categories),
some queries do not have enough true neighbors. Therefore we
focus our attention on mAP@5 results. UVVH consistently
outperforms MFH, ITQ, SSTH and JTAE with all the code
lengths.The advantage of UVVH with short code lengths is

also remarkable. When the code length is 16-bit, UVVH
outperforms the best competitor JTAE by 44.5% in terms
of mAP@5. UVVH outperforms SSVH prominently with
code lengths of 16 bits and 32 bits. It has nearly the same
performance with SSVH with code lengths of 64 bits and 128
bits.

The mAP@K results on YFCC are shown in Figure 4(i)-(l).
As can be seen, UVVH outperforms all the methods except for
SSVH with all the code lengths. Specifically, when the code
length is 16 bits, UVVH outperforms the most competitive
SSVH by 52.6%, 32.2%,25.3%, 25.3% in terms of mAP@K
(K = 5, 20, 40, 60). In terms of mAP@5, UVVH outperforms
SSVH with code lengths of 16 bits and 32 bits, and has nearly
the same performance with SSVH with code lengths of 64 bits
and 128 bits.
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Fig. 6: Top-5 retrieved results on FCVID dataset with code length of 128 bits when using UVVH and JTAE. Frames with
green border denote correct retrieved results and frames with red border denote incorrect retrieved results. The first row are
six query videos from different categories, and below ones are retrieved videos.

Precision-Recall (PR) curves on FCVID and ActivityNet
datasets with code lengths of 32 bits and 64 bits are shown
in Fig. 5. The best performance is achieved by UVVH. With
the same recall, UVVH consistently achieves higher precision
than the other two methods. Consistent with mAP@K results,
UVVH shows obvious advantage when the code length is
relatively short according to the PR curves.

Cross-dataset evaluation comparisons: It is important to
investigate how UVVH generalizes to cross-dataset retrieval
tasks, e.g., training on YFCC but testing on FCVID and
vice versa. TABLE II lists the cross-dataset (FCVID and
YFCC) performance gain (e.g. comparing the mAP@20 when
training on YFCC but testing on FCVID with training and
testing on FCVID) compared with of several hashing methods.
According to TABLE II, all the methods suffer performance
drop when training on FCVID and testing on YFCC compared
with training and testing on YFCC. And when training on
YFCC and testing on FCVID, the performances of all the
methods except DH become better compared with training
and testing on FCVID. This indicates that smaller training data
leads to performance drop and larger training data is conducive
to retrieval performance. Furthermore, the performance of
UVVH does not fluctuate so much as other methods (MFH,
DH and SSTH) during cross-dataset evaluation. This demon-
strates that UVVH has better generalization cross different
datasets.

Qualitative results: We pick six query videos on FCVID
dataset in different categories to show the qualitative results
with the top-5 retrieved videos. We present the top-5 retrieved
results in Fig. 6 with code length of 128 bits. The left column
presents the retrieved results of UVVH and the right column
presents that of the comparison method JTAE. As shown in

TABLE II: Cross-dataset mAP@20 gain (%) by Hamming
ranking of various methods with code length of 128 bits.

mAP@20-128bits MFH ITQ DH SSTH UVVH
train:FCVID
test:YFCC -30.0⇓ -2.47⇓ -13.8⇓ -10.0⇓ -5.9⇓

train:YFCC
test:FCVID 3.64 ⇑ 5.17⇑ -9.70⇓ 8.64⇑ 2.8⇑

Fig. 6, our proposed UVVH outperforms JTAE in general.
For “taekwondo” category, the top-5 retrieved results of both
UVVH and JTAE are all correct. For “chorus” and “social-
Dance” categories, the top-5 retrieved results of UVVH are
all correct, but JTAE makes some mistakes. For “socialDance”
category, JTAE retrieves a wrong video with content of social
meeting. Since the static appearances of social dance videos
and social meeting videos are similar (various people in a
hall), this may be due to the failure of capturing the temporal
information dancing. For “Playing Aircraft”, JTAE potentially
mistakes passenger plane with playing aircraft. This may
be because that JTAE pays more attention to the temporal
information flying, but neglects the appearance difference
between these two types of planes. In contrast, UVVH shows
advantage at capturing global appearance information. For
“Solving MagicCude” category, UVVH retrieves two wrong
videos which include two hands with colorful stuff. It shows
that UVVH mistakes the colorful stuff with a magic cube.
A possible reason is that UVVH ignores some useful details
of magic cubes. For “Swimming Professional”, both UVVH
and JTAE are likely to mistake professional swimming with
entertainment oriented swimming. One possible reason is that
FCVID is a general dataset and does not provide adequate
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TABLE III: mAP@K results of UVH, UVVH-1 and UVVH-2.
For each datasets, the rows above are with 16-bit codes and
the ones below are with 128-bit codes.

Datasets Methods K=5 K=20 K=40 K=60 K=80

Activity
Net

UVH 0.075 0.038 0.024 0.018 0.014
UVVH-1 0.089 0.043 0.027 0.020 0.016
UVVH-2 0.094 0.051 0.032 0.023 0.018

UVH 0.182 0.088 0.053 0.038 0.030
UVVH-1 0.187 0.092 0.054 0.039 0.031
UVVH-2 0.191 0.095 0.058 0.042 0.033

FCVID

UVH 0.228 0.150 0.118 0.102 0.091
UVVH-1 0.242 0.158 0.128 0.113 0.103
UVVH-2 0.244 0.159 0.129 0.114 0.104

UVH 0.436 0.252 0.188 0.157 0.136
UVVH-1 0.457 0.268 0.208 0.179 0.158
UVVH-2 0.480 0.284 0.222 0.190 0.169

TABLE IV: mAP@K results of unseen classes retrieval with
64-bit codes.

Methods K=5 K=20 K=40 K=60
SSTH 0.249 0.131 0.080 0.057
JTAE 0.258 0.139 0.086 0.062
UVH 0.279 0.156 0.098 0.071

UVVH 0.289 0.162 0.101 0.074

professional swimming videos.
Effect of the variational mechanism: We show the effect

of variational mechanism by comparing UVVH with a fully
deterministic method. For the comparison method, we train
the 1D-CNN-LSTM model in a fully deterministic way. That
is, we set z = µ and α1 = 0 during training. We use UVH
to denote the comparison method. We also train the UVVH
model in an end-to-end way, which means the first stage is
discarded during training process. We denote it as UVVH-1,
and denote the one trained in two stages as UVVH-2. We
list the mAP@K results of them in TABLE III. From this
table we can see that UVVH-1 consistently outperforms UVH
with both code lengths on two datasets, which can validate
the effectiveness of variational mechanism. Besides, UVVH-
2 slightly outperforms UVVH-1. This shows that using the
network pre-trained in deterministic manner, which alleviates
the randomness introduced by the monte Carlo sampling
procedure in stage2, further improves the performance.

To further validate that the variational mechanism is good
for out-of-sample extension, we follow [79] to split FCVID
into two parts with no class overlap: train75 and train25/test25,
where train75 is the training set and train25/test25 is the
retrieval database/query set. The train25/test25 contains videos
in 40 categories which are randomly chosen, and the train75
consists of data in the remaining categories. Test25 consists
of 1000 query videos and train25 consists of remaining
ones. The mAP@K results are shown in TABLE IV. From
this table we can see that UVVH outperforms UVH, which
validates the effectiveness of variational mechanism for out-of-
sample extension. Besides, UVVH outperforms state-of-the-art
competitors, SSTH and JTAE, when retrieving data in unseen
classes.

Effect of the 1D-CNN-LSTM model: To show the advan-

TABLE V: Comparisons with three baselines on FCVID. The
rows above are with 16-bit codes and the ones below are with
32-bit codes.

Methods K=5 K=20 K=40 K=60 K=80 K=100
BL1 0.206 0.103 0.084 0.073 0.065 0.060
BL2 0.160 0.088 0.069 0.058 0.048 0.043
BL3 0.243 0.152 0.121 0.105 0.094 0.086

UVVH 0.255 0.170 0.139 0.123 0.110 0.100
BL1 0.381 0.198 0.150 0.129 0.115 0.105
BL2 0.240 0.149 0.120 0.110 0.102 0.096
BL3 0.394 0.202 0.152 0.126 0.111 0.100

UVVH 0.411 0.226 0.174 0.149 0.133 0.120

tage of the 1D-CNN-LSTM model, we compare UVVH with
following baselines:

- BL1 We extend variational image hashing [63] into
video hashing. Specifically, we follow [63] to learn a relaxed
binary representation for each frame. We then conduct mean
pooling over these representations and binarize the obtained
representation to a binary code.

- BL2 We substitute the variational 1D-CNN-LSTM model
with a LSTM-based variational autoencoder. LSTM-based
encoder-decoder structure is the most widely used framework
of existing unsupervised deep video hashing methods.

- BL3 We only use the 1D-deconvolution network to recon-
struct the input frame features and rewrite the reconstruction
loss Lrecon as:

Lrecon =
1

mN

N∑
i=1

m∑
j=1

||vji − v̂
j
i ||

2
2, (17)

where v̂ji is the j-th intermediate frame feature of the i-th
video generated by the 1D-deconvolution network.

The mAP@K results of baselines introduced above and
UVVH are shown in TABLE V. In terms of mAP@5, UVVH
outperforms BL1 by 18.0% and 3.4% with 16 bits and 32
bits respectively. This indicates that directly extending varia-
tional image hashing to variational video hashing will cause
performance degradation. A main reason for the degradation
is that high-level structured content across frames is neglected.
In order to achieve better video retrieval, we should design a
suitable network to exploit the correlations among frames. As
can be seen, BL2 has the worst retrieval performance. While
LSTM is widely used for video representation learning, the
long process path of LSTM autoencoder makes it unsuitable
for video hashing since important information in early inputs
is easily forgotten. Besides, BL3 outperforms BL2 by a great
margin. This indicates that 1D-CNN we use in this work can
alleviate this problem since it processes the input frames in
a hierarchical and parallel manner. Moreover, UVVH outper-
forms BL3, which indicates that cascading the LSTM decoder
with 1D-deconvolution decoder further brings improvement.
We owe the performance superiority to our 1D-CNN-LSTM
structure, since it integrates the advantage of 1D-CNN and
LSTM, alleviating information forgetting and further capturing
the correlations among frames.

Effect of intermediate mapping to the high dimensional
vector tp: To validate the effect of the intermediate mapping
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TABLE VI: mAP@5 results for UVVH and UVVH-nopro on
FCVID.

code length 16 bits 64 bits 128 bits
UVVH-nopro 0.228 0.431 0.459

UVVH 0.244 0.451 0.469

TABLE VII: mAP@K results of UVVH-q and UVVH on
FCVID. The rows above are with 16-bit codes and the ones
below are with 128-bit codes.

Methods K=5 K=20 K=40 K=60 K=80 K=100
UVVH-q 0.197 0.107 0.078 0.065 0.057 0.050
UVVH 0.244 0.159 0.129 0.114 0.104 0.056

UVVH-q 0.432 0.267 0.209 0.179 0.160 0.145
UVVH 0.485 0.290 0.227 0.194 0.173 0.157

to the high dimensional vector tp in Equation (11), we directly
map h to t̂ as the comparison method and denote it as UVVH-
nopro. We present the mAP@5 results for UVVH and UVVH-
nopro in TABLE VI. As shown in TABLE VI, the intermediate
mapping leads to 6.6% improvement for 16-bit codes, 4.6%
improvement for 64-bit codes and 2.1% improvement for 128-
bit codes. In general the intermediate mapping has positive
effect with different code lengths, and short codes benefit more
from it.

Effect of the approximate activation function We have
different ways to solve the non-convex optimization problem
when discretizing the probabilistic latent representation. We
use the solution in [31] to handle this problem in this work.
Another way to solve it is to add a quantization loss:

Lquan =
1

N

N∑
i=1

||hi − zi||2. (18)

Then the loss function is rewritten as

L = α1Lprob + α2Lrecon + α3Lquan, (19)

where α1, α2 and α3 are hyper-parameters. We name this
compared method as UVVH-q and keep the original solution
as UVVH. We try some empirical values of these hyper-
parameters and include the best mAP@K results of UVVH-q
into comparison as shown Table VII. It shows that both method
can achieve satisfactory performance. The approximate activa-
tion function we use in this paper can achieve slightly better
performance without introducing extra hyper-parameter.

V. CONCLUSION

In this work, we propose an unsupervised variational video
hashing method for scalable video retrieval. The framework
of UVVH is in a variational encoder-decoder mode. UVVH
integrates variational mechanism to learn a probabilistic latent
representation of the salient factors of video variations. To
better capture the global information, the 1D-CNN-LSTM
model encodes the input frame-level features in a parallel
and hierarchical way, and further exploits the correlation
information in the decoding stage. Extensive experiments on
three large-scale video datasets demonstrate the effectiveness
of UVVH. For the future work, it is worth to try combining

motion features and frame-level appearance features to learn
video representation.
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